Moving the "Mathematicians" Blog Series to "The World of Mathematics"

I’ve decided to move my "Mathematicians" blog series from the Googology and Cosmology blog to a new home: The World of Mathematics . This shift will help me better organize content and focus on delivering a cohesive experience for my readers. The "Mathematicians" series explores the lives, contributions, and legacies of brilliant minds who have shaped the world of mathematics. While the series fit well within the broad themes of googology and cosmology, I realized it deserved its own dedicated platform. By housing it in The World of Mathematics, I can create a space solely focused on math, making it easier for readers to find and enjoy this content. This move aligns with my goal to expand my blogging topics and improve their accessibility. Googology and Cosmology will continue to focus on large numbers, the universe, and their fascinating intersections, while The World of Mathematics will dive deeper into the beauty and logic of math. I’m thrilled about this chan...

BAT4423's Googolisms List

Googolsuplexahlah ≈ {10,10,{10,100} [2] 2}

Goobolsuplex ≈ {10,10,{10,100 [2] 2} [2] 2}

Googolplexithirdahlah ≈ {10,10,99,{10,100} [2] 2}

Goobolplexithird ≈ {10,10,99,{10,100 [2] 2} [2] 2}

Googolplexifourthahlah ≈ {10,10,99,99,{10,100} [2] 2}

Googolplexififthahlah ≈ {10,6 [2] 3}

Googolplexisixthahlah ≈ {10,7 [2] 3}

Googolplexiseventhahlah ≈ {10,8 [2] 3}

Googolplexieighthahlah ≈ {10,9 [2] 3}

Googolplexininthahlah ≈ {10,10 [2] 3}

Googolplexitenthahlah ≈ {10,11 [2] 3}

Googolplexihundredthahlah ≈ {10,101 [2] 3}

Googolplexigoogolthahlah ≈ {10,{10,100} [2] 3}

Pencradulus = {10,10,10,10,10,100,3} & 10 ≈ {10,100 [1 [1\6~2] 1 [2\5~2] 1 [2\5~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Pencreedulus = {10,10,10,10,10,100,4} & 10 ≈ {10,100 [1 [1\6~2] 1 [2\5~2] 1 [2\5~2] 1 [2\5~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Encredulus = {10,10,10,10,10,10,10,10,10,100} & 10 ≈ {10,100 [1 [2\8~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Powporawamba = {10,100,3,2 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Terporawamba = {10,100,4,2 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Bibawamba = {10,10,100,5 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [2\2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Coxxablorg = {10,100 (3) 2} & 10 ≈ {10,100 [1 [1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Coxxadworg = {10,100 (3)(3) 2} & 10 ≈ {10,100 [1 [1\1\1\1,2\2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Toxxablorg = {10,100 (4) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Poxxablorg = {10,100 (5) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Hexxablorg = {10,100 (6) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Zexxablorg = {10,100 (7) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Yoxxablorg = {10,100 (8) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Broxxablorg = {10,100 (9) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gexxablorg = {10,100 (10) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Cosmatrix = {10,10 (10) 10} & 10 ≈ {10,10 [1 [1\1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Alphlorgulus = {10,10 (100) 2} & 10 ≈ {10,100 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Besslorgulus = {10,10 (200) 2} & 10 ≈ {10,200 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gasslorgulus = {10,10 (300) 2} & 10 ≈ {10,300 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Desslorgulus = {10,10 (400) 2} & 10 ≈ {10,400 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Thesslorgulus = {10,10 (500) 2} & 10 ≈ {10,500 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Iottlorgulus (2021) / Iosslorgulus (2023) = {10,10 (600) 2} & 10 ≈ {10,600 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Kapplorgulus (2021) / Kasslorgulus (2023) = {10,10 (700) 2} & 10 ≈ {10,700 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Lasslorgulus = {10,10 (800) 2} & 10 ≈ {10,800 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Sigglorgulus (2021) / Sisslorgulus (2023) = {10,10 (900) 2} & 10 ≈ {10,900 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Resslorgulus = {10,10 (1000) 2} & 10 ≈ {10,1000 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Orasslorgulus = {10,10 ({10,6}) 2} & 10 ≈ {10,{10,6} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Yesslorgulus = {10,10 ({10,9}) 2} & 10 ≈ {10,{10,9} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Lisslorgulus = {10,10 ({10,12}) 2} & 10 ≈ {10,{10,12} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gresslorgulus = {10,10 ({10,15}) 2} & 10 ≈ {10,{10,15} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Cysslorgulus = {10,10 ({10,18}) 2} & 10 ≈ {10,{10,18} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Blusslorgulus = {10,10 ({10,21}) 2} & 10 ≈ {10,{10,21} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Pusslorgulus = {10,10 ({10,24}) 2} & 10 ≈ {10,{10,24} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Masslorgulus = {10,10 ({10,27}) 2} & 10 ≈ {10,{10,27} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Pikklorgulus = {10,10 ({10,30}) 2} & 10 ≈ {10,{10,30} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Quintolapulus = {10,100 (0,0,0,0,0,1) 2} & 10 ≈ {10,100 [1 [1 [2\5~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gosextiplapulus = {10,100 ((((0,1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Goseptiplapulus = {10,100 (((((1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Go-octiplapulus = {10,100 (((((0,1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gononiplapulus = {10,100 ((((((1)1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Godeciplapulus = {10,100 ((((((0,1)1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Legiattic Googol = {10,100 / 2} ≈ s(10,100 {1,,1,2} 2)

Hectakulus = {100,100 / 2} ≈ {10,100 [1 [1 /(1,2) 2] 2] 2}

Chiliakulus = {1000,1000 / 2} ≈ {10,1000 [1 [1 /(1,2) 2] 2] 2}

Megakulus = {10^6,10^6 / 2} ≈ {10,{10,6} [1 [1 /(1,2) 2] 2] 2}

Gigakulus = {10^9,10^9 / 2} ≈ {10,{10,9} [1 [1 /(1,2) 2] 2] 2}

Terakulus = {10^12,10^12 / 2} ≈ {10,{10,12} [1 [1 /(1,2) 2] 2] 2}

Petakulus = {10^15,10^15 / 2} ≈ {10,{10,15} [1 [1 /(1,2) 2] 2] 2}

Exakulus = {10^18,10^18 / 2} ≈ {10,{10,18} [1 [1 /(1,2) 2] 2] 2}

Zettakulus = {10^21,10^21 / 2} ≈ {10,{10,21} [1 [1 /(1,2) 2] 2] 2}

Yottakulus = {10^24,10^24 / 2} ≈ {10,{10,24} [1 [1 /(1,2) 2] 2] 2}

Ronnakulus = {10^27,10^27 / 2} ≈ {10,{10,27} [1 [1 /(1,2) 2] 2] 2}

Quettakulus = {10^30,10^30 / 2} ≈ {10,{10,30} [1 [1 /(1,2) 2] 2] 2}

Googolulus = {10^100,10^100 / 2} ≈ {10,{10,100} [1 [1 /(1,2) 2] 2] 2}

Googolplexulus = {10^10^100,10^10^100 / 2} ≈ {10,{10,{10,100}} [1 [1 /(1,2) 2] 2] 2}

Googolsuplexulus ≈ {10,{10,10,{10,100}} [1 [1 /(1,2) 2] 2] 2}

Googolplexithirdulus ≈ {10,{10,10,99,{10,100}} [1 [1 /(1,2) 2] 2] 2}

Hectakulusplex / Grand Hectakulus = {{100,100 / 2},{100,100 / 2} / 2} ≈ {10,{10,100 [1 [1 /(1,2) 2] 2] 2} [1 [1 /(1,2) 2] 2] 2}

Legiattic Boogol = {10,10,100 / 2} ≈ s(10,100,1,2 {1,,1,2} 2)

Corploramonga / Legiattic Corporal = {10,10,1,2 / 2} ≈ s(10,10,2,2 {1,,1,2} 2)

Corplodamonga / Legiattic Corplodal = {10,10,1,3 / 2} ≈ s(10,10,2,3 {1,,1,2} 2)

Big Bawa = {3,3,3,7 / 2} ≈ s(3,3,4,7 {1,,1,2} 2)

Big Bogdawa = {3,3,3,8 / 2} ≈ s(3,3,4,8 {1,,1,2} 2)

Big Bovawa = {3,3,3,9 / 2} ≈ s(3,3,4,9 {1,,1,2} 2)

Big Bekawa = {3,3,3,10 / 2} ≈ s(3,3,4,10 {1,,1,2} 2)

Cordetamonga / Legiattic Cordetal = {10,10,1,4 / 2} ≈ s(10,10,2,4 {1,,1,2} 2)

Supromulus / Legiattic Troogol = {10,10,10,100 / 2} ≈ s(10,100,1,1,2 {1,,1,2} 2)

Cormegotamonga = {10,10,1,1,2 / 2} ≈ s(10,10,2,1,2 {1,,1,2} 2)

Corgigotamonga = {10,10,1,1,1,2 / 2} ≈ s(10,10,2,1,1,2 {1,,1,2} 2)

Legiattic Goobol = {10,100 (1) 2 / 2} ≈ s(10,100 {2} 2 {1,,1,2} 2)

Gibbiturbos / Legiattic Gibbol = {10,100,2 (1) 2 / 2} ≈ s(10,100,2 {2} 2 {1,,1,2} 2)

Gabbiturbos = {10,100,3 (1) 2 / 2} ≈ s(10,100,3 {2} 2 {1,,1,2} 2)

Boobiturbos = {10,10,100 (1) 2 / 2} ≈ s(10,100,1,2 {2} 2 {1,,1,2} 2)

Troobiturbos = {10,10,10,100 (1) 2 / 2} ≈ s(10,100,1,1,2 {2} 2 {1,,1,2} 2)

Gootriturbos / Legiattic Gootrol = {10,100 (1) 3 / 2} ≈ s(10,100 {2} 3 {1,,1,2} 2)

Gooquarturbos / Legiattic Gooquadrol = {10,100 (1) 4 / 2} ≈ s(10,100 {2} 4 {1,,1,2} 2)

Legiattic Emperal = {10,10 (1) 10 / 2} ≈ s(10,10 {2} 10 {1,,1,2} 2)

Gossiturbos / Legiattic Gossol = {10,10 (1) 100 / 2} ≈ s(10,100 {2} 1,2 {1,,1,2} 2)

Gissiturbos = {10,10 (1) 100,2 / 2} ≈ s(10,100 {2} 1,3 {1,,1,2} 2)

Gassiturbos = {10,10 (1) 100,3 / 2} ≈ s(10,100 {2} 1,4 {1,,1,2} 2)

Mossiturbos / Legiattic Mossol = {10,10 (1) 10,100 / 2} ≈ s(10,100 {2} 1,1,2 {1,,1,2} 2)

Bossiturbos = {10,10 (1) 10,10,100 / 2} ≈ s(10,100 {2} 1,1,1,2 {1,,1,2} 2)

Dubiturbos / Legiattic Dubol = {10,100 (1)(1) 2 / 2} ≈ s(10,100 {2}{2} 2 {1,,1,2} 2)

Dutriturbos = {10,100 (1)(1)(1) 2 / 2} ≈ s(10,100 {2}{2}{2} 2 {1,,1,2} 2)

Xappamonga = {10,10 (2) 2 / 2} ≈ s(10,10 {3} 2 {1,,1,2} 2)

Goxxiturbos = {10,100 (2) 2 / 2} ≈ s(10,100 {3} 2 {1,,1,2} 2)

Colossamonga = {10,10 (3) 2 / 2} ≈ s(10,10 {4} 2 {1,,1,2} 2)

Coloxxiturbos = {10,100 (3) 2 / 2} ≈ s(10,100 {4} 2 {1,,1,2} 2)

Terossamonga = {10,10 (4) 2 / 2} ≈ s(10,10 {5} 2 {1,,1,2} 2)

Gongulsamonga / Legiattic Gongulus = {10,100 (0,1) 2 / 2} ≈ s(10,100 {1,2} 2 {1,,1,2} 2)

Gingulsamonga = {10,100 (0,2) 2 / 2} ≈ s(10,100 {1,3} 2 {1,,1,2} 2)

Bongulsamonga = {10,100 (0,0,1) 2 / 2} ≈ s(10,100 {1,1,2} 2 {1,,1,2} 2)

Trongulsamonga = {10,100 (0,0,0,1) 2 / 2} ≈ s(10,100 {1,1,1,2} 2 {1,,1,2} 2)

Goplexulamonga / Legiattic Goplexulus = {10,100 ((1)1) 2 / 2} ≈ s(10,100 {1{2}2} 2 {1,,1,2} 2)

Goppamonga = {10^^100 & 10 / 2} ≈ s(10,100 {1`2} 2 {1,,1,2} 2)

Kungulamonga = {10^^^100 & 10 / 2} ≈ s(10,100 {1{1`2`}2} 2 {1,,1,2} 2)

Quadrulamonga = {10{4}100 & 10 / 2} ≈ s(10,100 {1{1`2`}1{1`2`}2} 2 {1,,1,2} 2)

Humolamonga = {10{100}10 & 10 / 2} ≈ s(10,100 {1{2`2`}2} 2 {1,,1,2} 2)

Genetrixamonga = {{10,10,10,10} & 10 / 2} ≈ s(10,100 {1{2`3`}2} 2 {1,,1,2} 2)

Linetrixamonga = {{10,10 (1) 2} & 10 / 2} ≈ s(10,100 {1{1`1,2`}2} 2 {1,,1,2} 2)

Golapulamonga = {{10,100 (0,1) 2} & 10 / 2} ≈ s(10,100 {1{1{1{2`}2`}2`}2} 2 {1,,1,2} 2)

Goplapulamonga = {{10,100 ((1)1) 2} & 10 / 2} ≈ s(10,100 {1{1{1`1,2`}2`}2} 2 {1,,1,2} 2)

Legiaditri Googol = {10,100 / 3} ≈ s(10,100 {1,,1,2} 3)

Goobiturtris / Goobiturtros = {10,100 (1) 2 / 3} ≈ s(10,100 {2} 2 {1,,1,2} 3)

Legiaditet Googol = {10,100 / 4} ≈ s(10,100 {1,,1,2} 4)

Legiadipent Googol = {10,100 / 5} ≈ s(10,100 {1,,1,2} 5)

Legiadihex Googol = {10,100 / 6} ≈ s(10,100 {1,,1,2} 6)

Dulegiattic Googol = {L,2}10,100 = {10,100 // 2} ≈ s(10,10 {1,,1{1,,1,2}2} 2)

Dulegiaditri Googol = {10,100 // 3} ≈ s(10,100 {1,,1{1,,1,2}2} 3)

Dulegiaditet Googol = {10,100 // 4} ≈ s(10,100 {1,,1{1,,1,2}2} 4)

Trilegiattic Googol = {L,3}10,100 = {10,100 /// 2} ≈ s(10,100 {1,,1{1,,1{1,,1,2}2}2} 2)

Quadralegiattic Googol = {L,4}10,100 = {10,100 //// 2} ≈ s(10,100 {1,,1{1,,1{1,,1{1,,1,2}2}2}2} 2)

Marongualith (= Mirongualithplex) = {L,X+1}10,100 = {10,100 //(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1{1,,1,2}2}2,,1,,2}2} 2)

Merongualith (= Mirongualithduplex) = {L,X+2}10,100 = {10,100 ///(1)/ 2}

Mierongualith = {L,X+3}10,100 = {10,100 ////(1)/ 2}

Mowrongualith = {L,X+4}10,100 = {10,100 /////(1)/ 2}

Myrongualith = {L,X+5}10,100 = {10,100 //////(1)/ 2}

Maringualith = {L,2X+1}10,100 = {10,100 /(1)// 2}

Meringualith = {L,2X+2}10,100 = {10,100 //(1)// 2}

Mieringualith = {L,2X+3}10,100 = {10,100 ///(1)// 2}

Mireengualith = {L,4X}10,100 = {10,100 (1)//// 2}

Mirowngualith = {L,5X}10,100 = {10,100 (1)///// 2}

Mirungualith = {L,6X}10,100 = {10,100 (1)////// 2}

Barongualith = {L,X^2+1}10,100 = {10,100 /(1)(1)/ 2}

Berongualith = {L,X^2+2}10,100 = {10,100 //(1)(1)/ 2}

Bierongualith = {L,X^2+3}10,100 = {10,100 ///(1)(1)/ 2}

Birmirongualith = {L,X^2+X}10,100 = {10,100 (1)/(1)/ 2}

Barmirongualith = {L,X^2+X+1}10,100 = {10,100 /(1)/(1)/ 2}

Birmiringualith = {L,X^2+2X}10,100 = {10,100 (1)//(1)/ 2}

Birmireengualith = {L,X^2+4X}10,100 = {10,100 (1)///(1)/ 2}

Birmirangualith = {L,X^2+3X}10,100 = {10,100 (1)////(1)/ 2}

Biringualith = {L,(X^2)2}10,100 = {10,100 (1)(1)// 2}

Birangualith = {L,(X^2)3}10,100 = {10,100 (1)(1)/// 2}

Bireengualith = {L,(X^2)4}10,100 = {10,100 (1)(1)//// 2}

Birowngualith = {L,(X^2)5}10,100 = {10,100 (1)(1)///// 2}

Birungualith = {L,(X^2)6}10,100 = {10,100 (1)(1)///// 2}

Quintirongualith = {L,X^5}10,100 = {10,5 (2)/ 2}

Sextirongualith = {L,X^6}10,100 = {10,6 (2)/ 2}

Centirongualith = {L,X^X}10,100 = {10,100 (2)/ 2}

Moplongualith = {L,X^(X+1)}10,100 = {10,100 (2)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}2} 2)

Moplorongualith = {L,X^(X+1)+1}10,100 = {10,100 /(2)(1)/ 2}

Miplorongualith = {L,X^(X+1)+2}10,100 = {10,100 //(2)(1)/ 2}

Moploro-mirongualith = {L,X^(X+1)+X}10,100 = {10,100 (1)/(2)(1)/ 2}

Moploro-miringualith = {L,X^(X+1)+2X}10,100 = {10,100 (1)//(2)(1)/ 2}

Moploro-birongualith = {L,X^(X+1)+X^2}10,100 = {10,100 (1)(1)/(2)(1)/ 2}

Moploro-centirongualith = {L,X^(X+1)+X^X}10,100 = {10,100 (2)/(1)/ 2}

Moplondigualith = {L,(X^(X+1))2}10,100 = {10,2 (2)(1)(1)/ 2}

Moplontrigualith = {L,(X^(X+1))3}10,100 = {10,3 (2)(1)(1)/ 2}

Moplingualith = {L,X^(X+2)}10,100 = {10,100 (2)(1)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}1{1{1,,1,,2}2,,1,,2}2} 2)

Moplangualith = {L,X^(X+3)}10,100 = {10,100 (2)(1)(1)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}1{1{1,,1,,2}2,,1,,2}1{1{1,,1,,2}2,,1,,2}2} 2)

Mopleengualith = {L,X^(X+4)}10,100 = {10,100 (2)(1)(1)(1)(1)/ 2}

Moplowngualith = {L,X^(X+5)}10,100 = {10,5 (2)(2)/ 2}

Moplowngualith = {L,X^(X+6)}10,100 = {10,6 (2)(2)/ 2}

Moplungualith = {L,X^(X+7)}10,100 = {10,7 (2)(2)/ 2}

Meplingualith = {L,X^4X}10,100 = {10,100 (2)(2)(2)(2)/ 2}

Mowplingualith = {L,X^5X}10,100 = {10,5 (3)/ 2}

Muplingualith = {L,X^6X}10,100 = {10,6 (3)/ 2}

Quintoplongualith = {L,X^^5}10,100

Sextoplongualith = {L,X^^6}10,100

Goomirongualdust = {L,X^^X+1}10,100

Goomarongualdust = {L,X^^X+2}10,100

Goomerongualdust = {L,X^^X+3}10,100

Goomiringualdust = {L,X^^X+2X}10,100

Goomirangualdust = {L,X^^X+3X}10,100

Goobirongualdust = {L,X^^X+X^2}10,100

Gootrirongualdust = {L,X^^X+X^3}10,100

Goomoplingualdust = {L,X^^X+X^X}10,100

Gimmerdust = {L,X^^2X}10,100 ≈ s(10,100 {1{1{1,,1,,2}2,,2,,2}1{1{1,,2,,2}2,,1,,2}2,,1,,2} 2)

Gammerdust = {L,X^^3X}10,100

Gemmerdust = {L,X^^4X}10,100

Gowmerdust = {L,X^^5X}10,100

Gummerdust = {L,X^^6X}10,100

Bimmerdust = {L,X^^(X^2)2}10,100

Bammerdust = {L,X^^(X^2)3}10,100

Bemmerdust = {L,X^^(X^2)4}10,100

Trimmerdust = {L,X^^(X^3)2}10,100

Trammerdust = {L,X^^(X^3)3}10,100

Tremmerdust = {L,X^^(X^3)4}10,100

Quadroomerdust = {L,X^^X^4}10,100

Quintoomerdust = {L,X^^X^5}10,100

Gooberdust = {L,X^^X^^X}10,100

Gimberdust = {L,X^^X^^2X}10,100

Gamberdust = {L,X^^X^^3X}10,100

Gemberdust = {L,X^^X^^4X}10,100

Gowberdust = {L,X^^X^^5X}10,100

Gumberdust = {L,X^^X^^6X}10,100

Booberdust = {L,X^^X^^X^2}10,100

Trooberdust = {L,X^^X^^X^3}10,100

Gootrerdust = {L,X^^^4}10,100

Gooquardust = {L,X^^^5}10,100

Gooquirdust = {L,X^^^6}10,100

Gooserdust = {L,X^^^7}10,100

Goosordust = {L,X^^^8}10,100

Goohardust = {L,X^^^9}10,100

Goonerdust = {L,X^^^10}10,100

Goomertrust = {L,X^^^X}10,100

Goobertrust = {L,{X,3,4}}10,100

Gooquartrust = {L,{X,4,4}}10,100

Goomerquast = {L,{X,X,4}}10,100

Goomerquist / Perribulus = {L,{X,X,5}}10,100

Goomersest / Herribulus = {L,{X,X,6}}10,100

Goomersist / Hirribulus = {L,{X,X,7}}10,100

Goomeroct / Orribulus = {L,{X,X,8}}10,100

Goomerenn / Norribulus = {L,{X,X,9}}10,100

Goomerdek = {L,{X,X,10}}10,100

Comments

Popular posts from this blog

History of Large Numbers - Part 1: Notched Bones and Sumerian

Getting Started with Googology

Quantum Foam: The Fabric of Spacetime