BAT4423's Googolisms List

Googolsuplexahlah ≈ {10,10,{10,100} [2] 2}

Goobolsuplex ≈ {10,10,{10,100 [2] 2} [2] 2}

Googolplexithirdahlah ≈ {10,10,99,{10,100} [2] 2}

Goobolplexithird ≈ {10,10,99,{10,100 [2] 2} [2] 2}

Googolplexifourthahlah ≈ {10,10,99,99,{10,100} [2] 2}

Googolplexififthahlah ≈ {10,6 [2] 3}

Googolplexisixthahlah ≈ {10,7 [2] 3}

Googolplexiseventhahlah ≈ {10,8 [2] 3}

Googolplexieighthahlah ≈ {10,9 [2] 3}

Googolplexininthahlah ≈ {10,10 [2] 3}

Googolplexitenthahlah ≈ {10,11 [2] 3}

Googolplexihundredthahlah ≈ {10,101 [2] 3}

Googolplexigoogolthahlah ≈ {10,{10,100} [2] 3}

Pencradulus = {10,10,10,10,10,100,3} & 10 ≈ {10,100 [1 [1\6~2] 1 [2\5~2] 1 [2\5~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Pencreedulus = {10,10,10,10,10,100,4} & 10 ≈ {10,100 [1 [1\6~2] 1 [2\5~2] 1 [2\5~2] 1 [2\5~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Encredulus = {10,10,10,10,10,10,10,10,10,100} & 10 ≈ {10,100 [1 [2\8~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Powporawamba = {10,100,3,2 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Terporawamba = {10,100,4,2 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Bibawamba = {10,10,100,5 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [2\2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Coxxablorg = {10,100 (3) 2} & 10 ≈ {10,100 [1 [1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Coxxadworg = {10,100 (3)(3) 2} & 10 ≈ {10,100 [1 [1\1\1\1,2\2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Toxxablorg = {10,100 (4) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Poxxablorg = {10,100 (5) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Hexxablorg = {10,100 (6) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Zexxablorg = {10,100 (7) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Yoxxablorg = {10,100 (8) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Broxxablorg = {10,100 (9) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gexxablorg = {10,100 (10) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Cosmatrix = {10,10 (10) 10} & 10 ≈ {10,10 [1 [1\1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Alphlorgulus = {10,10 (100) 2} & 10 ≈ {10,100 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Besslorgulus = {10,10 (200) 2} & 10 ≈ {10,200 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gasslorgulus = {10,10 (300) 2} & 10 ≈ {10,300 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Desslorgulus = {10,10 (400) 2} & 10 ≈ {10,400 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Thesslorgulus = {10,10 (500) 2} & 10 ≈ {10,500 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Iottlorgulus (2021) / Iosslorgulus (2023) = {10,10 (600) 2} & 10 ≈ {10,600 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Kapplorgulus (2021) / Kasslorgulus (2023) = {10,10 (700) 2} & 10 ≈ {10,700 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Lasslorgulus = {10,10 (800) 2} & 10 ≈ {10,800 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Sigglorgulus (2021) / Sisslorgulus (2023) = {10,10 (900) 2} & 10 ≈ {10,900 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Resslorgulus = {10,10 (1000) 2} & 10 ≈ {10,1000 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Orasslorgulus = {10,10 ({10,6}) 2} & 10 ≈ {10,{10,6} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Yesslorgulus = {10,10 ({10,9}) 2} & 10 ≈ {10,{10,9} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Lisslorgulus = {10,10 ({10,12}) 2} & 10 ≈ {10,{10,12} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gresslorgulus = {10,10 ({10,15}) 2} & 10 ≈ {10,{10,15} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Cysslorgulus = {10,10 ({10,18}) 2} & 10 ≈ {10,{10,18} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Blusslorgulus = {10,10 ({10,21}) 2} & 10 ≈ {10,{10,21} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Pusslorgulus = {10,10 ({10,24}) 2} & 10 ≈ {10,{10,24} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Masslorgulus = {10,10 ({10,27}) 2} & 10 ≈ {10,{10,27} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Pikklorgulus = {10,10 ({10,30}) 2} & 10 ≈ {10,{10,30} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Quintolapulus = {10,100 (0,0,0,0,0,1) 2} & 10 ≈ {10,100 [1 [1 [2\5~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gosextiplapulus = {10,100 ((((0,1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Goseptiplapulus = {10,100 (((((1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Go-octiplapulus = {10,100 (((((0,1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Gononiplapulus = {10,100 ((((((1)1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Godeciplapulus = {10,100 ((((((0,1)1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation

Legiattic Googol = {10,100 / 2} ≈ s(10,100 {1,,1,2} 2)

Hectakulus = {100,100 / 2} ≈ {10,100 [1 [1 /(1,2) 2] 2] 2}

Chiliakulus = {1000,1000 / 2} ≈ {10,1000 [1 [1 /(1,2) 2] 2] 2}

Megakulus = {10^6,10^6 / 2} ≈ {10,{10,6} [1 [1 /(1,2) 2] 2] 2}

Gigakulus = {10^9,10^9 / 2} ≈ {10,{10,9} [1 [1 /(1,2) 2] 2] 2}

Terakulus = {10^12,10^12 / 2} ≈ {10,{10,12} [1 [1 /(1,2) 2] 2] 2}

Petakulus = {10^15,10^15 / 2} ≈ {10,{10,15} [1 [1 /(1,2) 2] 2] 2}

Exakulus = {10^18,10^18 / 2} ≈ {10,{10,18} [1 [1 /(1,2) 2] 2] 2}

Zettakulus = {10^21,10^21 / 2} ≈ {10,{10,21} [1 [1 /(1,2) 2] 2] 2}

Yottakulus = {10^24,10^24 / 2} ≈ {10,{10,24} [1 [1 /(1,2) 2] 2] 2}

Ronnakulus = {10^27,10^27 / 2} ≈ {10,{10,27} [1 [1 /(1,2) 2] 2] 2}

Quettakulus = {10^30,10^30 / 2} ≈ {10,{10,30} [1 [1 /(1,2) 2] 2] 2}

Googolulus = {10^100,10^100 / 2} ≈ {10,{10,100} [1 [1 /(1,2) 2] 2] 2}

Googolplexulus = {10^10^100,10^10^100 / 2} ≈ {10,{10,{10,100}} [1 [1 /(1,2) 2] 2] 2}

Googolsuplexulus ≈ {10,{10,10,{10,100}} [1 [1 /(1,2) 2] 2] 2}

Googolplexithirdulus ≈ {10,{10,10,99,{10,100}} [1 [1 /(1,2) 2] 2] 2}

Hectakulusplex / Grand Hectakulus = {{100,100 / 2},{100,100 / 2} / 2} ≈ {10,{10,100 [1 [1 /(1,2) 2] 2] 2} [1 [1 /(1,2) 2] 2] 2}

Legiattic Boogol = {10,10,100 / 2} ≈ s(10,100,1,2 {1,,1,2} 2)

Corploramonga / Legiattic Corporal = {10,10,1,2 / 2} ≈ s(10,10,2,2 {1,,1,2} 2)

Corplodamonga / Legiattic Corplodal = {10,10,1,3 / 2} ≈ s(10,10,2,3 {1,,1,2} 2)

Big Bawa = {3,3,3,7 / 2} ≈ s(3,3,4,7 {1,,1,2} 2)

Big Bogdawa = {3,3,3,8 / 2} ≈ s(3,3,4,8 {1,,1,2} 2)

Big Bovawa = {3,3,3,9 / 2} ≈ s(3,3,4,9 {1,,1,2} 2)

Big Bekawa = {3,3,3,10 / 2} ≈ s(3,3,4,10 {1,,1,2} 2)

Cordetamonga / Legiattic Cordetal = {10,10,1,4 / 2} ≈ s(10,10,2,4 {1,,1,2} 2)

Supromulus / Legiattic Troogol = {10,10,10,100 / 2} ≈ s(10,100,1,1,2 {1,,1,2} 2)

Cormegotamonga = {10,10,1,1,2 / 2} ≈ s(10,10,2,1,2 {1,,1,2} 2)

Corgigotamonga = {10,10,1,1,1,2 / 2} ≈ s(10,10,2,1,1,2 {1,,1,2} 2)

Legiattic Goobol = {10,100 (1) 2 / 2} ≈ s(10,100 {2} 2 {1,,1,2} 2)

Gibbiturbos / Legiattic Gibbol = {10,100,2 (1) 2 / 2} ≈ s(10,100,2 {2} 2 {1,,1,2} 2)

Gabbiturbos = {10,100,3 (1) 2 / 2} ≈ s(10,100,3 {2} 2 {1,,1,2} 2)

Boobiturbos = {10,10,100 (1) 2 / 2} ≈ s(10,100,1,2 {2} 2 {1,,1,2} 2)

Troobiturbos = {10,10,10,100 (1) 2 / 2} ≈ s(10,100,1,1,2 {2} 2 {1,,1,2} 2)

Gootriturbos / Legiattic Gootrol = {10,100 (1) 3 / 2} ≈ s(10,100 {2} 3 {1,,1,2} 2)

Gooquarturbos / Legiattic Gooquadrol = {10,100 (1) 4 / 2} ≈ s(10,100 {2} 4 {1,,1,2} 2)

Legiattic Emperal = {10,10 (1) 10 / 2} ≈ s(10,10 {2} 10 {1,,1,2} 2)

Gossiturbos / Legiattic Gossol = {10,10 (1) 100 / 2} ≈ s(10,100 {2} 1,2 {1,,1,2} 2)

Gissiturbos = {10,10 (1) 100,2 / 2} ≈ s(10,100 {2} 1,3 {1,,1,2} 2)

Gassiturbos = {10,10 (1) 100,3 / 2} ≈ s(10,100 {2} 1,4 {1,,1,2} 2)

Mossiturbos / Legiattic Mossol = {10,10 (1) 10,100 / 2} ≈ s(10,100 {2} 1,1,2 {1,,1,2} 2)

Bossiturbos = {10,10 (1) 10,10,100 / 2} ≈ s(10,100 {2} 1,1,1,2 {1,,1,2} 2)

Dubiturbos / Legiattic Dubol = {10,100 (1)(1) 2 / 2} ≈ s(10,100 {2}{2} 2 {1,,1,2} 2)

Dutriturbos = {10,100 (1)(1)(1) 2 / 2} ≈ s(10,100 {2}{2}{2} 2 {1,,1,2} 2)

Xappamonga = {10,10 (2) 2 / 2} ≈ s(10,10 {3} 2 {1,,1,2} 2)

Goxxiturbos = {10,100 (2) 2 / 2} ≈ s(10,100 {3} 2 {1,,1,2} 2)

Colossamonga = {10,10 (3) 2 / 2} ≈ s(10,10 {4} 2 {1,,1,2} 2)

Coloxxiturbos = {10,100 (3) 2 / 2} ≈ s(10,100 {4} 2 {1,,1,2} 2)

Terossamonga = {10,10 (4) 2 / 2} ≈ s(10,10 {5} 2 {1,,1,2} 2)

Gongulsamonga / Legiattic Gongulus = {10,100 (0,1) 2 / 2} ≈ s(10,100 {1,2} 2 {1,,1,2} 2)

Gingulsamonga = {10,100 (0,2) 2 / 2} ≈ s(10,100 {1,3} 2 {1,,1,2} 2)

Bongulsamonga = {10,100 (0,0,1) 2 / 2} ≈ s(10,100 {1,1,2} 2 {1,,1,2} 2)

Trongulsamonga = {10,100 (0,0,0,1) 2 / 2} ≈ s(10,100 {1,1,1,2} 2 {1,,1,2} 2)

Goplexulamonga / Legiattic Goplexulus = {10,100 ((1)1) 2 / 2} ≈ s(10,100 {1{2}2} 2 {1,,1,2} 2)

Goppamonga = {10^^100 & 10 / 2} ≈ s(10,100 {1`2} 2 {1,,1,2} 2)

Kungulamonga = {10^^^100 & 10 / 2} ≈ s(10,100 {1{1`2`}2} 2 {1,,1,2} 2)

Quadrulamonga = {10{4}100 & 10 / 2} ≈ s(10,100 {1{1`2`}1{1`2`}2} 2 {1,,1,2} 2)

Humolamonga = {10{100}10 & 10 / 2} ≈ s(10,100 {1{2`2`}2} 2 {1,,1,2} 2)

Genetrixamonga = {{10,10,10,10} & 10 / 2} ≈ s(10,100 {1{2`3`}2} 2 {1,,1,2} 2)

Linetrixamonga = {{10,10 (1) 2} & 10 / 2} ≈ s(10,100 {1{1`1,2`}2} 2 {1,,1,2} 2)

Golapulamonga = {{10,100 (0,1) 2} & 10 / 2} ≈ s(10,100 {1{1{1{2`}2`}2`}2} 2 {1,,1,2} 2)

Goplapulamonga = {{10,100 ((1)1) 2} & 10 / 2} ≈ s(10,100 {1{1{1`1,2`}2`}2} 2 {1,,1,2} 2)

Legiaditri Googol = {10,100 / 3} ≈ s(10,100 {1,,1,2} 3)

Goobiturtris / Goobiturtros = {10,100 (1) 2 / 3} ≈ s(10,100 {2} 2 {1,,1,2} 3)

Legiaditet Googol = {10,100 / 4} ≈ s(10,100 {1,,1,2} 4)

Legiadipent Googol = {10,100 / 5} ≈ s(10,100 {1,,1,2} 5)

Legiadihex Googol = {10,100 / 6} ≈ s(10,100 {1,,1,2} 6)

Dulegiattic Googol = {L,2}10,100 = {10,100 // 2} ≈ s(10,10 {1,,1{1,,1,2}2} 2)

Dulegiaditri Googol = {10,100 // 3} ≈ s(10,100 {1,,1{1,,1,2}2} 3)

Dulegiaditet Googol = {10,100 // 4} ≈ s(10,100 {1,,1{1,,1,2}2} 4)

Trilegiattic Googol = {L,3}10,100 = {10,100 /// 2} ≈ s(10,100 {1,,1{1,,1{1,,1,2}2}2} 2)

Quadralegiattic Googol = {L,4}10,100 = {10,100 //// 2} ≈ s(10,100 {1,,1{1,,1{1,,1{1,,1,2}2}2}2} 2)

Marongualith (= Mirongualithplex) = {L,X+1}10,100 = {10,100 //(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1{1,,1,2}2}2,,1,,2}2} 2)

Merongualith (= Mirongualithduplex) = {L,X+2}10,100 = {10,100 ///(1)/ 2}

Mierongualith = {L,X+3}10,100 = {10,100 ////(1)/ 2}

Mowrongualith = {L,X+4}10,100 = {10,100 /////(1)/ 2}

Myrongualith = {L,X+5}10,100 = {10,100 //////(1)/ 2}

Maringualith = {L,2X+1}10,100 = {10,100 /(1)// 2}

Meringualith = {L,2X+2}10,100 = {10,100 //(1)// 2}

Mieringualith = {L,2X+3}10,100 = {10,100 ///(1)// 2}

Mireengualith = {L,4X}10,100 = {10,100 (1)//// 2}

Mirowngualith = {L,5X}10,100 = {10,100 (1)///// 2}

Mirungualith = {L,6X}10,100 = {10,100 (1)////// 2}

Barongualith = {L,X^2+1}10,100 = {10,100 /(1)(1)/ 2}

Berongualith = {L,X^2+2}10,100 = {10,100 //(1)(1)/ 2}

Bierongualith = {L,X^2+3}10,100 = {10,100 ///(1)(1)/ 2}

Birmirongualith = {L,X^2+X}10,100 = {10,100 (1)/(1)/ 2}

Barmirongualith = {L,X^2+X+1}10,100 = {10,100 /(1)/(1)/ 2}

Birmiringualith = {L,X^2+2X}10,100 = {10,100 (1)//(1)/ 2}

Birmireengualith = {L,X^2+4X}10,100 = {10,100 (1)///(1)/ 2}

Birmirangualith = {L,X^2+3X}10,100 = {10,100 (1)////(1)/ 2}

Biringualith = {L,(X^2)2}10,100 = {10,100 (1)(1)// 2}

Birangualith = {L,(X^2)3}10,100 = {10,100 (1)(1)/// 2}

Bireengualith = {L,(X^2)4}10,100 = {10,100 (1)(1)//// 2}

Birowngualith = {L,(X^2)5}10,100 = {10,100 (1)(1)///// 2}

Birungualith = {L,(X^2)6}10,100 = {10,100 (1)(1)///// 2}

Quintirongualith = {L,X^5}10,100 = {10,5 (2)/ 2}

Sextirongualith = {L,X^6}10,100 = {10,6 (2)/ 2}

Centirongualith = {L,X^X}10,100 = {10,100 (2)/ 2}

Moplongualith = {L,X^(X+1)}10,100 = {10,100 (2)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}2} 2)

Moplorongualith = {L,X^(X+1)+1}10,100 = {10,100 /(2)(1)/ 2}

Miplorongualith = {L,X^(X+1)+2}10,100 = {10,100 //(2)(1)/ 2}

Moploro-mirongualith = {L,X^(X+1)+X}10,100 = {10,100 (1)/(2)(1)/ 2}

Moploro-miringualith = {L,X^(X+1)+2X}10,100 = {10,100 (1)//(2)(1)/ 2}

Moploro-birongualith = {L,X^(X+1)+X^2}10,100 = {10,100 (1)(1)/(2)(1)/ 2}

Moploro-centirongualith = {L,X^(X+1)+X^X}10,100 = {10,100 (2)/(1)/ 2}

Moplondigualith = {L,(X^(X+1))2}10,100 = {10,2 (2)(1)(1)/ 2}

Moplontrigualith = {L,(X^(X+1))3}10,100 = {10,3 (2)(1)(1)/ 2}

Moplingualith = {L,X^(X+2)}10,100 = {10,100 (2)(1)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}1{1{1,,1,,2}2,,1,,2}2} 2)

Moplangualith = {L,X^(X+3)}10,100 = {10,100 (2)(1)(1)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}1{1{1,,1,,2}2,,1,,2}1{1{1,,1,,2}2,,1,,2}2} 2)

Mopleengualith = {L,X^(X+4)}10,100 = {10,100 (2)(1)(1)(1)(1)/ 2}

Moplowngualith = {L,X^(X+5)}10,100 = {10,5 (2)(2)/ 2}

Moplowngualith = {L,X^(X+6)}10,100 = {10,6 (2)(2)/ 2}

Moplungualith = {L,X^(X+7)}10,100 = {10,7 (2)(2)/ 2}

Meplingualith = {L,X^4X}10,100 = {10,100 (2)(2)(2)(2)/ 2}

Mowplingualith = {L,X^5X}10,100 = {10,5 (3)/ 2}

Muplingualith = {L,X^6X}10,100 = {10,6 (3)/ 2}

Quintoplongualith = {L,X^^5}10,100

Sextoplongualith = {L,X^^6}10,100

Goomirongualdust = {L,X^^X+1}10,100

Goomarongualdust = {L,X^^X+2}10,100

Goomerongualdust = {L,X^^X+3}10,100

Goomiringualdust = {L,X^^X+2X}10,100

Goomirangualdust = {L,X^^X+3X}10,100

Goobirongualdust = {L,X^^X+X^2}10,100

Gootrirongualdust = {L,X^^X+X^3}10,100

Goomoplingualdust = {L,X^^X+X^X}10,100

Gimmerdust = {L,X^^2X}10,100 ≈ s(10,100 {1{1{1,,1,,2}2,,2,,2}1{1{1,,2,,2}2,,1,,2}2,,1,,2} 2)

Gammerdust = {L,X^^3X}10,100

Gemmerdust = {L,X^^4X}10,100

Gowmerdust = {L,X^^5X}10,100

Gummerdust = {L,X^^6X}10,100

Bimmerdust = {L,X^^(X^2)2}10,100

Bammerdust = {L,X^^(X^2)3}10,100

Bemmerdust = {L,X^^(X^2)4}10,100

Trimmerdust = {L,X^^(X^3)2}10,100

Trammerdust = {L,X^^(X^3)3}10,100

Tremmerdust = {L,X^^(X^3)4}10,100

Quadroomerdust = {L,X^^X^4}10,100

Quintoomerdust = {L,X^^X^5}10,100

Gooberdust = {L,X^^X^^X}10,100

Gimberdust = {L,X^^X^^2X}10,100

Gamberdust = {L,X^^X^^3X}10,100

Gemberdust = {L,X^^X^^4X}10,100

Gowberdust = {L,X^^X^^5X}10,100

Gumberdust = {L,X^^X^^6X}10,100

Booberdust = {L,X^^X^^X^2}10,100

Trooberdust = {L,X^^X^^X^3}10,100

Gootrerdust = {L,X^^^4}10,100

Gooquardust = {L,X^^^5}10,100

Gooquirdust = {L,X^^^6}10,100

Gooserdust = {L,X^^^7}10,100

Goosordust = {L,X^^^8}10,100

Goohardust = {L,X^^^9}10,100

Goonerdust = {L,X^^^10}10,100

Goomertrust = {L,X^^^X}10,100

Goobertrust = {L,{X,3,4}}10,100

Gooquartrust = {L,{X,4,4}}10,100

Goomerquast = {L,{X,X,4}}10,100

Goomerquist / Perribulus = {L,{X,X,5}}10,100

Goomersest / Herribulus = {L,{X,X,6}}10,100

Goomersist / Hirribulus = {L,{X,X,7}}10,100

Goomeroct / Orribulus = {L,{X,X,8}}10,100

Goomerenn / Norribulus = {L,{X,X,9}}10,100

Goomerdek = {L,{X,X,10}}10,100

Comments

Popular posts from this blog

History of Large Numbers - Part 1: Notched Bones and Sumerian

Getting Started with Googology

Quantum Foam: The Fabric of Spacetime