BAT4423's Googolisms List
- Get link
- X
- Other Apps
Googolsuplexahlah ≈ {10,10,{10,100} [2] 2}
Goobolsuplex ≈ {10,10,{10,100 [2] 2} [2] 2}
Googolplexithirdahlah ≈ {10,10,99,{10,100} [2] 2}
Goobolplexithird ≈ {10,10,99,{10,100 [2] 2} [2] 2}
Googolplexifourthahlah ≈ {10,10,99,99,{10,100} [2] 2}
Googolplexififthahlah ≈ {10,6 [2] 3}
Googolplexisixthahlah ≈ {10,7 [2] 3}
Googolplexiseventhahlah ≈ {10,8 [2] 3}
Googolplexieighthahlah ≈ {10,9 [2] 3}
Googolplexininthahlah ≈ {10,10 [2] 3}
Googolplexitenthahlah ≈ {10,11 [2] 3}
Googolplexihundredthahlah ≈ {10,101 [2] 3}
Googolplexigoogolthahlah ≈ {10,{10,100} [2] 3}
Pencradulus = {10,10,10,10,10,100,3} & 10 ≈ {10,100 [1 [1\6~2] 1 [2\5~2] 1 [2\5~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Pencreedulus = {10,10,10,10,10,100,4} & 10 ≈ {10,100 [1 [1\6~2] 1 [2\5~2] 1 [2\5~2] 1 [2\5~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Encredulus = {10,10,10,10,10,10,10,10,10,100} & 10 ≈ {10,100 [1 [2\8~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Powporawamba = {10,100,3,2 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Terporawamba = {10,100,4,2 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Bibawamba = {10,10,100,5 (1) 2} & 10 ≈ {10,100 [1 [1\1\2~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [1\3~2] 1 [2\2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Coxxablorg = {10,100 (3) 2} & 10 ≈ {10,100 [1 [1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Coxxadworg = {10,100 (3)(3) 2} & 10 ≈ {10,100 [1 [1\1\1\1,2\2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Toxxablorg = {10,100 (4) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Poxxablorg = {10,100 (5) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Hexxablorg = {10,100 (6) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Zexxablorg = {10,100 (7) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Yoxxablorg = {10,100 (8) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Broxxablorg = {10,100 (9) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Gexxablorg = {10,100 (10) 2} & 10 ≈ {10,100 [1 [1\1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Cosmatrix = {10,10 (10) 10} & 10 ≈ {10,10 [1 [1\1\1\1\1\1\1\1\1\1\1,2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Alphlorgulus = {10,10 (100) 2} & 10 ≈ {10,100 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Besslorgulus = {10,10 (200) 2} & 10 ≈ {10,200 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Gasslorgulus = {10,10 (300) 2} & 10 ≈ {10,300 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Desslorgulus = {10,10 (400) 2} & 10 ≈ {10,400 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Thesslorgulus = {10,10 (500) 2} & 10 ≈ {10,500 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Iottlorgulus (2021) / Iosslorgulus (2023) = {10,10 (600) 2} & 10 ≈ {10,600 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Kapplorgulus (2021) / Kasslorgulus (2023) = {10,10 (700) 2} & 10 ≈ {10,700 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Lasslorgulus = {10,10 (800) 2} & 10 ≈ {10,800 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Sigglorgulus (2021) / Sisslorgulus (2023) = {10,10 (900) 2} & 10 ≈ {10,900 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Resslorgulus = {10,10 (1000) 2} & 10 ≈ {10,1000 [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Orasslorgulus = {10,10 ({10,6}) 2} & 10 ≈ {10,{10,6} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Yesslorgulus = {10,10 ({10,9}) 2} & 10 ≈ {10,{10,9} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Lisslorgulus = {10,10 ({10,12}) 2} & 10 ≈ {10,{10,12} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Gresslorgulus = {10,10 ({10,15}) 2} & 10 ≈ {10,{10,15} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Cysslorgulus = {10,10 ({10,18}) 2} & 10 ≈ {10,{10,18} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Blusslorgulus = {10,10 ({10,21}) 2} & 10 ≈ {10,{10,21} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Pusslorgulus = {10,10 ({10,24}) 2} & 10 ≈ {10,{10,24} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Masslorgulus = {10,10 ({10,27}) 2} & 10 ≈ {10,{10,27} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Pikklorgulus = {10,10 ({10,30}) 2} & 10 ≈ {10,{10,30} [1 [1 [2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Quintolapulus = {10,100 (0,0,0,0,0,1) 2} & 10 ≈ {10,100 [1 [1 [2\5~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Gosextiplapulus = {10,100 ((((0,1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Goseptiplapulus = {10,100 (((((1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Go-octiplapulus = {10,100 (((((0,1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Gononiplapulus = {10,100 ((((((1)1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Godeciplapulus = {10,100 ((((((0,1)1)1)1)1)1) 2} & 10 ≈ {10,100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2~2] 2] 2} in Hierarchial Hyper-Nested Array Notation
Legiattic Googol = {10,100 / 2} ≈ s(10,100 {1,,1,2} 2)
Hectakulus = {100,100 / 2} ≈ {10,100 [1 [1 /(1,2) 2] 2] 2}
Chiliakulus = {1000,1000 / 2} ≈ {10,1000 [1 [1 /(1,2) 2] 2] 2}
Megakulus = {10^6,10^6 / 2} ≈ {10,{10,6} [1 [1 /(1,2) 2] 2] 2}
Gigakulus = {10^9,10^9 / 2} ≈ {10,{10,9} [1 [1 /(1,2) 2] 2] 2}
Terakulus = {10^12,10^12 / 2} ≈ {10,{10,12} [1 [1 /(1,2) 2] 2] 2}
Petakulus = {10^15,10^15 / 2} ≈ {10,{10,15} [1 [1 /(1,2) 2] 2] 2}
Exakulus = {10^18,10^18 / 2} ≈ {10,{10,18} [1 [1 /(1,2) 2] 2] 2}
Zettakulus = {10^21,10^21 / 2} ≈ {10,{10,21} [1 [1 /(1,2) 2] 2] 2}
Yottakulus = {10^24,10^24 / 2} ≈ {10,{10,24} [1 [1 /(1,2) 2] 2] 2}
Ronnakulus = {10^27,10^27 / 2} ≈ {10,{10,27} [1 [1 /(1,2) 2] 2] 2}
Quettakulus = {10^30,10^30 / 2} ≈ {10,{10,30} [1 [1 /(1,2) 2] 2] 2}
Googolulus = {10^100,10^100 / 2} ≈ {10,{10,100} [1 [1 /(1,2) 2] 2] 2}
Googolplexulus = {10^10^100,10^10^100 / 2} ≈ {10,{10,{10,100}} [1 [1 /(1,2) 2] 2] 2}
Googolsuplexulus ≈ {10,{10,10,{10,100}} [1 [1 /(1,2) 2] 2] 2}
Googolplexithirdulus ≈ {10,{10,10,99,{10,100}} [1 [1 /(1,2) 2] 2] 2}
Hectakulusplex / Grand Hectakulus = {{100,100 / 2},{100,100 / 2} / 2} ≈ {10,{10,100 [1 [1 /(1,2) 2] 2] 2} [1 [1 /(1,2) 2] 2] 2}
Legiattic Boogol = {10,10,100 / 2} ≈ s(10,100,1,2 {1,,1,2} 2)
Corploramonga / Legiattic Corporal = {10,10,1,2 / 2} ≈ s(10,10,2,2 {1,,1,2} 2)
Corplodamonga / Legiattic Corplodal = {10,10,1,3 / 2} ≈ s(10,10,2,3 {1,,1,2} 2)
Big Bawa = {3,3,3,7 / 2} ≈ s(3,3,4,7 {1,,1,2} 2)
Big Bogdawa = {3,3,3,8 / 2} ≈ s(3,3,4,8 {1,,1,2} 2)
Big Bovawa = {3,3,3,9 / 2} ≈ s(3,3,4,9 {1,,1,2} 2)
Big Bekawa = {3,3,3,10 / 2} ≈ s(3,3,4,10 {1,,1,2} 2)
Cordetamonga / Legiattic Cordetal = {10,10,1,4 / 2} ≈ s(10,10,2,4 {1,,1,2} 2)
Supromulus / Legiattic Troogol = {10,10,10,100 / 2} ≈ s(10,100,1,1,2 {1,,1,2} 2)
Cormegotamonga = {10,10,1,1,2 / 2} ≈ s(10,10,2,1,2 {1,,1,2} 2)
Corgigotamonga = {10,10,1,1,1,2 / 2} ≈ s(10,10,2,1,1,2 {1,,1,2} 2)
Legiattic Goobol = {10,100 (1) 2 / 2} ≈ s(10,100 {2} 2 {1,,1,2} 2)
Gibbiturbos / Legiattic Gibbol = {10,100,2 (1) 2 / 2} ≈ s(10,100,2 {2} 2 {1,,1,2} 2)
Gabbiturbos = {10,100,3 (1) 2 / 2} ≈ s(10,100,3 {2} 2 {1,,1,2} 2)
Boobiturbos = {10,10,100 (1) 2 / 2} ≈ s(10,100,1,2 {2} 2 {1,,1,2} 2)
Troobiturbos = {10,10,10,100 (1) 2 / 2} ≈ s(10,100,1,1,2 {2} 2 {1,,1,2} 2)
Gootriturbos / Legiattic Gootrol = {10,100 (1) 3 / 2} ≈ s(10,100 {2} 3 {1,,1,2} 2)
Gooquarturbos / Legiattic Gooquadrol = {10,100 (1) 4 / 2} ≈ s(10,100 {2} 4 {1,,1,2} 2)
Legiattic Emperal = {10,10 (1) 10 / 2} ≈ s(10,10 {2} 10 {1,,1,2} 2)
Gossiturbos / Legiattic Gossol = {10,10 (1) 100 / 2} ≈ s(10,100 {2} 1,2 {1,,1,2} 2)
Gissiturbos = {10,10 (1) 100,2 / 2} ≈ s(10,100 {2} 1,3 {1,,1,2} 2)
Gassiturbos = {10,10 (1) 100,3 / 2} ≈ s(10,100 {2} 1,4 {1,,1,2} 2)
Mossiturbos / Legiattic Mossol = {10,10 (1) 10,100 / 2} ≈ s(10,100 {2} 1,1,2 {1,,1,2} 2)
Bossiturbos = {10,10 (1) 10,10,100 / 2} ≈ s(10,100 {2} 1,1,1,2 {1,,1,2} 2)
Dubiturbos / Legiattic Dubol = {10,100 (1)(1) 2 / 2} ≈ s(10,100 {2}{2} 2 {1,,1,2} 2)
Dutriturbos = {10,100 (1)(1)(1) 2 / 2} ≈ s(10,100 {2}{2}{2} 2 {1,,1,2} 2)
Xappamonga = {10,10 (2) 2 / 2} ≈ s(10,10 {3} 2 {1,,1,2} 2)
Goxxiturbos = {10,100 (2) 2 / 2} ≈ s(10,100 {3} 2 {1,,1,2} 2)
Colossamonga = {10,10 (3) 2 / 2} ≈ s(10,10 {4} 2 {1,,1,2} 2)
Coloxxiturbos = {10,100 (3) 2 / 2} ≈ s(10,100 {4} 2 {1,,1,2} 2)
Terossamonga = {10,10 (4) 2 / 2} ≈ s(10,10 {5} 2 {1,,1,2} 2)
Gongulsamonga / Legiattic Gongulus = {10,100 (0,1) 2 / 2} ≈ s(10,100 {1,2} 2 {1,,1,2} 2)
Gingulsamonga = {10,100 (0,2) 2 / 2} ≈ s(10,100 {1,3} 2 {1,,1,2} 2)
Bongulsamonga = {10,100 (0,0,1) 2 / 2} ≈ s(10,100 {1,1,2} 2 {1,,1,2} 2)
Trongulsamonga = {10,100 (0,0,0,1) 2 / 2} ≈ s(10,100 {1,1,1,2} 2 {1,,1,2} 2)
Goplexulamonga / Legiattic Goplexulus = {10,100 ((1)1) 2 / 2} ≈ s(10,100 {1{2}2} 2 {1,,1,2} 2)
Goppamonga = {10^^100 & 10 / 2} ≈ s(10,100 {1`2} 2 {1,,1,2} 2)
Kungulamonga = {10^^^100 & 10 / 2} ≈ s(10,100 {1{1`2`}2} 2 {1,,1,2} 2)
Quadrulamonga = {10{4}100 & 10 / 2} ≈ s(10,100 {1{1`2`}1{1`2`}2} 2 {1,,1,2} 2)
Humolamonga = {10{100}10 & 10 / 2} ≈ s(10,100 {1{2`2`}2} 2 {1,,1,2} 2)
Genetrixamonga = {{10,10,10,10} & 10 / 2} ≈ s(10,100 {1{2`3`}2} 2 {1,,1,2} 2)
Linetrixamonga = {{10,10 (1) 2} & 10 / 2} ≈ s(10,100 {1{1`1,2`}2} 2 {1,,1,2} 2)
Golapulamonga = {{10,100 (0,1) 2} & 10 / 2} ≈ s(10,100 {1{1{1{2`}2`}2`}2} 2 {1,,1,2} 2)
Goplapulamonga = {{10,100 ((1)1) 2} & 10 / 2} ≈ s(10,100 {1{1{1`1,2`}2`}2} 2 {1,,1,2} 2)
Legiaditri Googol = {10,100 / 3} ≈ s(10,100 {1,,1,2} 3)
Goobiturtris / Goobiturtros = {10,100 (1) 2 / 3} ≈ s(10,100 {2} 2 {1,,1,2} 3)
Legiaditet Googol = {10,100 / 4} ≈ s(10,100 {1,,1,2} 4)
Legiadipent Googol = {10,100 / 5} ≈ s(10,100 {1,,1,2} 5)
Legiadihex Googol = {10,100 / 6} ≈ s(10,100 {1,,1,2} 6)
Dulegiattic Googol = {L,2}10,100 = {10,100 // 2} ≈ s(10,10 {1,,1{1,,1,2}2} 2)
Dulegiaditri Googol = {10,100 // 3} ≈ s(10,100 {1,,1{1,,1,2}2} 3)
Dulegiaditet Googol = {10,100 // 4} ≈ s(10,100 {1,,1{1,,1,2}2} 4)
Trilegiattic Googol = {L,3}10,100 = {10,100 /// 2} ≈ s(10,100 {1,,1{1,,1{1,,1,2}2}2} 2)
Quadralegiattic Googol = {L,4}10,100 = {10,100 //// 2} ≈ s(10,100 {1,,1{1,,1{1,,1{1,,1,2}2}2}2} 2)
Marongualith (= Mirongualithplex) = {L,X+1}10,100 = {10,100 //(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1{1,,1,2}2}2,,1,,2}2} 2)
Merongualith (= Mirongualithduplex) = {L,X+2}10,100 = {10,100 ///(1)/ 2}
Mierongualith = {L,X+3}10,100 = {10,100 ////(1)/ 2}
Mowrongualith = {L,X+4}10,100 = {10,100 /////(1)/ 2}
Myrongualith = {L,X+5}10,100 = {10,100 //////(1)/ 2}
Maringualith = {L,2X+1}10,100 = {10,100 /(1)// 2}
Meringualith = {L,2X+2}10,100 = {10,100 //(1)// 2}
Mieringualith = {L,2X+3}10,100 = {10,100 ///(1)// 2}
Mireengualith = {L,4X}10,100 = {10,100 (1)//// 2}
Mirowngualith = {L,5X}10,100 = {10,100 (1)///// 2}
Mirungualith = {L,6X}10,100 = {10,100 (1)////// 2}
Barongualith = {L,X^2+1}10,100 = {10,100 /(1)(1)/ 2}
Berongualith = {L,X^2+2}10,100 = {10,100 //(1)(1)/ 2}
Bierongualith = {L,X^2+3}10,100 = {10,100 ///(1)(1)/ 2}
Birmirongualith = {L,X^2+X}10,100 = {10,100 (1)/(1)/ 2}
Barmirongualith = {L,X^2+X+1}10,100 = {10,100 /(1)/(1)/ 2}
Birmiringualith = {L,X^2+2X}10,100 = {10,100 (1)//(1)/ 2}
Birmireengualith = {L,X^2+4X}10,100 = {10,100 (1)///(1)/ 2}
Birmirangualith = {L,X^2+3X}10,100 = {10,100 (1)////(1)/ 2}
Biringualith = {L,(X^2)2}10,100 = {10,100 (1)(1)// 2}
Birangualith = {L,(X^2)3}10,100 = {10,100 (1)(1)/// 2}
Bireengualith = {L,(X^2)4}10,100 = {10,100 (1)(1)//// 2}
Birowngualith = {L,(X^2)5}10,100 = {10,100 (1)(1)///// 2}
Birungualith = {L,(X^2)6}10,100 = {10,100 (1)(1)///// 2}
Quintirongualith = {L,X^5}10,100 = {10,5 (2)/ 2}
Sextirongualith = {L,X^6}10,100 = {10,6 (2)/ 2}
Centirongualith = {L,X^X}10,100 = {10,100 (2)/ 2}
Moplongualith = {L,X^(X+1)}10,100 = {10,100 (2)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}2} 2)
Moplorongualith = {L,X^(X+1)+1}10,100 = {10,100 /(2)(1)/ 2}
Miplorongualith = {L,X^(X+1)+2}10,100 = {10,100 //(2)(1)/ 2}
Moploro-mirongualith = {L,X^(X+1)+X}10,100 = {10,100 (1)/(2)(1)/ 2}
Moploro-miringualith = {L,X^(X+1)+2X}10,100 = {10,100 (1)//(2)(1)/ 2}
Moploro-birongualith = {L,X^(X+1)+X^2}10,100 = {10,100 (1)(1)/(2)(1)/ 2}
Moploro-centirongualith = {L,X^(X+1)+X^X}10,100 = {10,100 (2)/(1)/ 2}
Moplondigualith = {L,(X^(X+1))2}10,100 = {10,2 (2)(1)(1)/ 2}
Moplontrigualith = {L,(X^(X+1))3}10,100 = {10,3 (2)(1)(1)/ 2}
Moplingualith = {L,X^(X+2)}10,100 = {10,100 (2)(1)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}1{1{1,,1,,2}2,,1,,2}2} 2)
Moplangualith = {L,X^(X+3)}10,100 = {10,100 (2)(1)(1)(1)/ 2} ≈ s(10,100 {1,,1{1{1,,1,,2}3,,1,,2}1{1{1,,1,,2}2,,1,,2}1{1{1,,1,,2}2,,1,,2}2} 2)
Mopleengualith = {L,X^(X+4)}10,100 = {10,100 (2)(1)(1)(1)(1)/ 2}
Moplowngualith = {L,X^(X+5)}10,100 = {10,5 (2)(2)/ 2}
Moplowngualith = {L,X^(X+6)}10,100 = {10,6 (2)(2)/ 2}
Moplungualith = {L,X^(X+7)}10,100 = {10,7 (2)(2)/ 2}
Meplingualith = {L,X^4X}10,100 = {10,100 (2)(2)(2)(2)/ 2}
Mowplingualith = {L,X^5X}10,100 = {10,5 (3)/ 2}
Muplingualith = {L,X^6X}10,100 = {10,6 (3)/ 2}
Quintoplongualith = {L,X^^5}10,100
Sextoplongualith = {L,X^^6}10,100
Goomirongualdust = {L,X^^X+1}10,100
Goomarongualdust = {L,X^^X+2}10,100
Goomerongualdust = {L,X^^X+3}10,100
Goomiringualdust = {L,X^^X+2X}10,100
Goomirangualdust = {L,X^^X+3X}10,100
Goobirongualdust = {L,X^^X+X^2}10,100
Gootrirongualdust = {L,X^^X+X^3}10,100
Goomoplingualdust = {L,X^^X+X^X}10,100
Gimmerdust = {L,X^^2X}10,100 ≈ s(10,100 {1{1{1,,1,,2}2,,2,,2}1{1{1,,2,,2}2,,1,,2}2,,1,,2} 2)
Gammerdust = {L,X^^3X}10,100
Gemmerdust = {L,X^^4X}10,100
Gowmerdust = {L,X^^5X}10,100
Gummerdust = {L,X^^6X}10,100
Bimmerdust = {L,X^^(X^2)2}10,100
Bammerdust = {L,X^^(X^2)3}10,100
Bemmerdust = {L,X^^(X^2)4}10,100
Trimmerdust = {L,X^^(X^3)2}10,100
Trammerdust = {L,X^^(X^3)3}10,100
Tremmerdust = {L,X^^(X^3)4}10,100
Quadroomerdust = {L,X^^X^4}10,100
Quintoomerdust = {L,X^^X^5}10,100
Gooberdust = {L,X^^X^^X}10,100
Gimberdust = {L,X^^X^^2X}10,100
Gamberdust = {L,X^^X^^3X}10,100
Gemberdust = {L,X^^X^^4X}10,100
Gowberdust = {L,X^^X^^5X}10,100
Gumberdust = {L,X^^X^^6X}10,100
Booberdust = {L,X^^X^^X^2}10,100
Trooberdust = {L,X^^X^^X^3}10,100
Gootrerdust = {L,X^^^4}10,100
Gooquardust = {L,X^^^5}10,100
Gooquirdust = {L,X^^^6}10,100
Gooserdust = {L,X^^^7}10,100
Goosordust = {L,X^^^8}10,100
Goohardust = {L,X^^^9}10,100
Goonerdust = {L,X^^^10}10,100
Goomertrust = {L,X^^^X}10,100
Goobertrust = {L,{X,3,4}}10,100
Gooquartrust = {L,{X,4,4}}10,100
Goomerquast = {L,{X,X,4}}10,100
Goomerquist / Perribulus = {L,{X,X,5}}10,100
Goomersest / Herribulus = {L,{X,X,6}}10,100
Goomersist / Hirribulus = {L,{X,X,7}}10,100
Goomeroct / Orribulus = {L,{X,X,8}}10,100
Goomerenn / Norribulus = {L,{X,X,9}}10,100
Goomerdek = {L,{X,X,10}}10,100
- Get link
- X
- Other Apps
Comments
Post a Comment